CS 4530 & CS 5500
Software Engineering

Lecture 10.3: Deployment Infrastructure

Jonathan Bell, John Boyland, Mitch Wand
Khoury College of Computer Sciences
© 2021, released under CC BY-SA

http://creativecommons.org/licenses/by-sa/4.0/

Learning Objectives for this Lesson

By the end of this lesson, you should be able to...

* Describe the difference between key deployment container
abstractions and their role in modern software

 Compare the performance and cost of different deployment
infrastructures, including platform-as-a-service

Deploying a Web App

Circa 2008: Manual deployments to private or shared machines

Write some code * A simple approach that works, but does not scale in:

ﬁ-

Copy over (S)FTP

Restart server with my changes, ® Slze Of prOg rams

make sure it doesn’t crash

e Number of machines

 Number of programs

* Frequency of deployments

Class Server, in CS Department O O
Data Center j:f j:r O
Class Server, in CS Department j:E
Data Center

Deploying a Web App

Making it better: automation

e Automatically sFTP code to all 50+ machines O Write some code
 Monitor for anomalies ﬁ -
* Write a scheduler for machine assignment... New

program

e e e S

Class Server, in CS Department Class Server, in CS Department Class Server, in CS Department Class Server, in CS Department Class Server, in CS Department
Data Center Data Center Data Center Data Center Data Center

Class Server, in CS Department Class Server, in CS Department Class Server, in CS Department Class Server, in CS Department Class Server, in CS Department
Data Center Data Center Data Center Data Center Data Center

Deploying a Web App

Making it better: Multitenancy

 What if the mapping of programs/users to machines is not 1:1?

 Example: 5 applications, each get 200MB of RAM, server has 1GB O
* Problem: What happens if someone’s program goes awry? ﬂ:[\
O Deploy my app

Class Server, in CS Department
Data Center

O O
ﬁﬁ ﬁﬁ N

Multi-Tenancy

Virtualization to the rescue

» Solution: Each app gets its own Virtual Machine (VM) ﬁ

* OS provides resource limits and quality guarantees per-VM

Deploy my app

e Each VM runs its own OS - not an efficient use of resources

(5x200MB RAM for each app PLUS 5x500MB RAM to run 5
OS’s)

* Lightweight containers (e.g. Docker) provide isolation,
but run in same OS, less resource O O

O ﬁ
ﬁ /J:r Deploy our apps

Class Server, in CS Department
Data Center

Automation + Multi-tenancy: Kubernetes

Build Build Build
friends list Newsfeed

“Give me at least 1 of each of these app services in their own docker containers, and if the

load gets above a threshold, spin up more of them”

list

Managed by Kubernetes

Suggestions

Send
response

Some other
customer’s service

Suggestions

Automating Deployment of Complex Infrastructure

Large-scale cluster management at Google with Borg
Abhishek Verma' Luis Pedrosa? Madhukar Korupolu

David Oppenheimer

Eric Tune John Wilkes

Google Inc.

Abstract

Google’s Borg system is a cluster manager that runs hun-
dreds of thousands of jobs, from many thousands of differ-
ent applications, across a number of clusters each with up to
tens of thousands of machines.

It achieves high utilization by combining admission con-
trol, efficient task-packing, over-commitment, and machine
sharing with process-level performance isolation. It supports
high-availability applications with runtime features that min-
imize fault-recovery time, and scheduling policies that re-
duce the probability of correlated failures. Borg simplifies
life for its users by offering a declarative job specification
language, name service integration, real-time job monitor-
ing, and tools to analyze and simulate system behavior.

We present a summary of the Borg system architecture
and features, important design decisions, a quantitative anal-
ysis of some of its policy decisions, and a qualitative ex-
amination of lessons learned from a decade of operational
experience with it.

1. Introduction

The cluster management system we internally call Borg ad-
mits, schedules, starts, restarts, and monitors the full range
of applications that Google runs. This paper explains how.
Borg provides three main benefits: it (1) hides the details
of resource management and failure handling so its users can
focus on application development instead; (2) operates with
very high reliability and availability, and supports applica-
tions that do the same; and (3) lets us run workloads across
tens of thousands of machines effectively. Borg is not the
first system to address these issues, but it’s one of the few op-
erating at this scale, with this degree of resiliency and com-
pleteness. This paper is organized around these topics, con-

T Work done while author was at Google.
£ Currently at University of Southern California.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

EuroSys’15, April 21-24, 2015, Bordeaux, France.

Copyright is held by the owner/author(s).

ACM 978-1-4503-3238-5/15/04.

hutp://dx.doi.org/10.1145/2741948.2741964

config !
s Borgoy] @smand-line]] [S —]]

Cell

BorgMaster | read/Ul
shard

scheduler I persistent store

(Paxos)

| link shard

\
o=

Figure 1: The high-level architecture of Borg. Only a tiny fraction
of the thousands of worker nodes are shown.

cluding with a set of qualitative observations we have made
from operating Borg in production for more than a decade.

2. The user perspective

Borg’s users are Google developers and system administra-
tors (site reliability engineers or SREs) that run Google's
applications and services. Users submit their work to Borg
in the form of jobs, each of which consists of one or more
tasks that all run the same program (binary). Each job runs
in one Borg cell, a set of machines that are managed as a
unit. The remainder of this section describes the main fea-
tures exposed in the user view of Borg.

2.1 The workload

Borg cells run a heterogenous workload with two main parts.
The first is long-running services that should “never” go
down, and handle short-lived latency-sensitive requests (a
few us to a few hundred ms). Such services are used for
end-user-facing products such as Gmail, Google Docs, and
web search, and for internal infrastructure services (e.g.,
BigTable). The second is batch jobs that take from a few
seconds to a few days to complete; these are much less sen-
sitive to short-term performance fluctuations. The workload
mix varies across cells, which run different mixes of applica-
tions depending on their major tenants (e.g., some cells are
quite batch-intensive), and also varies over time: batch jobs

https://research.google/pubs/pub43438/

https://research.google/pubs/pub43438/

Automation + Multi-tenancy: Kubernetes

Example: Multi-Juicer, the Juice Shop Framework

Each team gets a JuiceShop instance

Each JuiceShop instance is a docker
container ©

M
Multiple docker containers run on the o)
same VM —
A load balancer provisions new 6,
containers ~

As VMs get full, new VMs are booted

https://qgithub.com/iteratec/multi-juicer

JuiceBalancer

JuiceShop

JuiceShop

https://github.com/iteratec/multi-juicer

Multi- Tenancy

Platform-as-a-service: What if we don’t care about the infrastructure?

| have React, | have
ExpressJS, | have

Cloud, can | please

just have a working

Auto deploy
app?

O Continuous Integration

Server Platform Provider
Heroku
Netlify

Platform-as-a-Service: Covey.Town Deployment

Heroku

H neu-se/covey.town

<> Code (1) Issues 1 Il Pull requests 1 (») Actions \''ll Projects LI Wiki (1) Security |~ Insights 5! Settings
¥ master ~ ¥ 3 branches © 0tags Go to file Add file ~
9 jon-bell Add HJKL,WASD as key options, close up the edgas-atibamas 226056 Gao T N
s . My project runs After running npm install,

9 .editorconfig

5 .gitignore

9 package-lock.json

™ package.json

with NodedS W

¥ hard-code a demo town id that will alwayj

run this to make a server

frontend Add HJKL WAS[

services/roomService Add an optig 2 provisi... 8 days ago

2 months ago

Heroku’s Amazon EC2

2 months ago
1 lines (1 Aloc) 47 Bytes VM
9 Procfile | 2 months ago
. web: node services/roomService/build/server.js
- README.md 12 days ago Covey.Town Towns

2 months ago

Service

Linting

2 months ago

Covey.Town Towns
Service

Heroku’s Amazon
EC2 VM

Heroku’s Load
Balancer

Heroku’s Amazon EC2
VM

customer | customer

Covey.Town Towns
Service

Platform-as-a-Service: Covey.Town Deployment
Netlify

Netlify’s Builder
(Proprietary)

Settings for epic-leakey-0cbc99 wecome to oy T ST

Vil chat, To g starmedd, se6up your camess aeel

app.covey.town

Deploys from GitHub. Owned by Jonathan Bell's team. e

Last update on Mar 12 (6 days ago)

General Continuous Deployment Run this command
Build & deploy Settings for Continuous Deployment from a Git repository to bu | Id my S'te
Continuous Deployment
Build settings
Environment —
Post processing
Repository: & github.com/gfu-se/covey.town-private .
Deploy notifications N America
Base directory: frontend
Domain management =m===
Build command: Cl= npm run-script build
Analytics
Publish directory: frontend/build
Functions
Builds: Active —
Identity
Forms Learn more about common configuration directives in the docs 2

S America

Africa

Multi- Tenancy

Functions-as-a-Service: What if we just have a few functions that get called irregularly?

| just need a few
functions that grants
Twilio tokens! Why do |
need to pay for a
container?

Serverless Provider

AWS Lambda
Google Cloud Functions
Azure Functions

Cloudflare Workers
Apache OpenWhisk

Computing Infrastructure

Choosing an abstraction for your application

* Centralization vs customization: “machines as cattle vs machines as pets”
« How do we manage state?
 What is our expected scale?

« How much management overhead do we want to take on?

Computing Infrastructure

Summary of the options

 Deploy VMs: Greatest degree of control, greatest cost, greatest latency
 Deploy containers: Better resource utilization
* Platform-as-a-service: Minimal degree of control, YMMYV with cost

* Function-as-a-service: Minimal degree of control, least latency, YMMV with
COst

This work is licensed under a Creative Commons
Attribution-ShareAlike license

* This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-sa/4.0/

e You are free to:

e Share — copy and redistribute the material in any medium or format
 Adapt — remix, transform, and build upon the material
e for any purpose, even commercially.

* Under the following terms:

e Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made.

You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your
use.

e ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under
the same license as the original.

 No additional restrictions — You may not apply legal terms or technological measures that legally restrict others
from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/

